A Refinement of the Crystal Structure of Tetraphenylmethane: Three Independent Redeterminations

By A. Robbins and G. A. Jeffrey
Department of Crystallography, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, U.S.A. and Department of Chemistry, Brookhaven National Laboratory, Upton, New York 11973, U.S.A.
John P. Chesick and Jerry Donohue
Department of Chemistry, Haverford College, Haverford, Pennsylvania 19041, U.S.A. and Department of Chemistry and Laboratory for Research on Structure of Matter, University of Pennsylvania, Philadelphia, Pennsylvania 19174, U.S.A.
and F.A.Cotton, Bertram A. Frenz and Carlos A. Murillo
Department of Chemistry, Texas A \& M University, College Station, Texas 77843, U.S.A.

(Received 7 March 1975; accepted 27 March 1975)

Abstract

Tetraphenylmethane, $\mathrm{C}_{25} \mathrm{H}_{20}$, tetragonal, $P \overline{4} 2_{1} c$ ($D_{2 d}^{4}$), $a=10 \cdot 896$ (2), $c=7 \cdot 280$ (1) \AA at $20^{\circ} \mathrm{C} ; Z=2$, molecular symmetry $\overline{4}, D_{m}=1.217, D_{x}=1.226 \mathrm{~g} \mathrm{~cm}^{-3}$. Three independent three-dimensional refinements of an earlier two-dimensional analysis. The structural parameters are $\psi=7 \cdot 5, \theta=49 \cdot 2^{\circ}$. The central $\mathrm{C}-\mathrm{C}$ bonds are 1.553 (3) \AA (corrected) and the central valence angles are unequal; $106 \cdot 7$ (2) and $110 \cdot 9$ (2). The diameters of the phenyl rings are 5.0° from collinearity with the central $\mathrm{C}-\mathrm{C}$ bonds. The phenyl C-C distances are within $\pm 0.012(2.4 \sigma)$ of the mean of $1.393 \AA$ (corrected). There is a closure of the phenyl ring angle of $3.0^{\circ}(10 \sigma)$ at $C(1)$ compared with the others which average $120 \cdot 5^{\circ}$. The small departures from planarity of the benzene ring are no greater than $0.010 \AA$.

Introduction

Tetraphenylmethane is a member of an isostructural series which includes the compounds with $\mathrm{Si}, \mathrm{Ge}, \mathrm{Sn}$ and Pb as the central atom (Ismailzade \& Z̆danov, 1952; Busetti, Mammi, Signor \& Del Pra, 1967; Chieh \& Trotter, 1970; Glidewell \& Sheldrick, 1971; Chieh, 1971, 1972; Karipides \& Haller, 1972). Because of their relative simplicity, these structures have been the object of a theoretical calculation aimed at predicting both the intramolecular geometry and the intermolecular packing (Ahmed, Kitaigorodsky \& Mirskaya, 1971). The obvious deficiencies of an early two-dimensional crystal-structure analysis by Sumsion \& McLachlan (1950) led three groups to decide simultaneously to refine the structure of $\mathrm{C}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{4}$ using modern techniques of X-ray single-crystal diffractometry and computing. The results from one group were briefly reported (Robbins \& Jeffrey, 1974).

Results

The three sets of crystal data and details of the structure refinement methods are given in Table 1. The atomic parameters are given in Table 2. The molecular dimensions and a stereo view are given in Table 3 and Fig. 1. The lattice constants at 20 and 26° correspond to α 's of the order of $10^{-4} \mathrm{deg}^{-1}$, which is reasonable.

However, no corresponding systematic differences were observable in the comparison of the atomic positional or thermal parameters. The small differences in bond lengths in Table 3, suggest that the difference in cell dimensions is due, in part, to a systematic discrepancy of about 0.1%.

A rigid-body analysis based on the central carbon and one ring gave a better fit than that based on the whole molecule. The center of libration is $0 \cdot 9 \AA$ from $\mathrm{C}(0)$ and about midway between $\mathrm{C}(1)$ and $\mathrm{C}\left(1^{\prime \prime}\right)$ (Robbins, 1975). The r.m.s. value of $U_{i j} \exp \left(-U_{l j}\right.$ RBM) was $0.0029 \AA^{2}$ and $\sigma\left(U_{i j}\right.$ RBM $)=0.0040 \AA$. This table of parameters is available.* A riding-motion correction increased the $\mathrm{C}-\mathrm{C}$ distances by $0.002-0.004 \AA$. This correction is not included in the data in Fig. 1 and Table 3. The half-normal probability plots between the three sets of data are available.* There was one outlier common to two plots, $\mathrm{C}(3) \beta_{12}$ for EP. These plots have slopes ranging from 1.3 (thermal parameters WP versus T) to 1.8 (positional parameters EP versus T). When the σ 's of each set were rescaled to give slopes of unity, the new σ 's were $0.003 \AA$ for $\mathrm{C}(0)-\mathrm{C}(1)$ and $0.005 \AA$ for other C-C bonds. With these values, the

[^0]mean difference in the bond lengths from the data at 20 and 26° shown in Table 3 was $0 \cdot 5 \sigma$ and the greatest difference was $1 \cdot 5 \sigma$. The $\mathrm{C}-\mathrm{H}$ bond lengths which ranged from 0.98 to $1.04 \AA$ had $\sigma=0.03 \AA$. The bond angles had σ 's of $0 \cdot 2^{\circ}$ for those about $\mathrm{C}(0)$ and 0.3° elsewhere, except for those involving hydrogens where $\sigma=2^{\circ}$. The three tables of observed and calculated structure factors are available.*

Discussion

The coordinates given in Table 2 correspond to large changes from the original values of Sumsion \& McLachlan; they differ on average by $0.17 \AA$, the largest being $0.56 \AA$. In the new determinations, no individual parameter value differs by more than 3σ (uncorrected from least-squares refinement) from the mean.

* See previous footnote.

Apart from the distortions from ideal tetrahedral and trigonal bond angles, discussed below, the crystal structure of $\mathrm{C}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{4}$ is defined by two parameters: the angle $\psi=7.5(2)^{\circ}$ [shown in Fig. 1(a)] between $\mathrm{C}(0)-\mathrm{C}(1)$ and \mathbf{b}, projected down \mathbf{c}; the angle $\theta=$ $49.2(2)^{\circ}$ between the best least-squares plane of a phenyl ring viewed down its $\mathrm{C}(0)-\mathrm{C}\left(1^{\prime}\right)$ bond and $\mathrm{C}(0)-\mathrm{C}(1)$. Alternative, and more direct, parameters are the torsion angles $C(1)-C(0)-C\left(1^{\prime}\right)-C\left(2^{\prime}\right)=48 \cdot 4$ (2), $\mathrm{C}(1)-\mathrm{C}(0)-\mathrm{C}\left(1^{\prime}\right)-\mathrm{C}\left(6^{\prime}\right)=-130.4(2)^{\circ}$ [shown in Fig. $1(b)]$.
These parameters, ψ and θ, were calculated by Ahmed, Kitaigorodsky \& Mirskaya (1971) using a minimum potential method. They used Sumsion \& McLachlan's cell dimensions and assumed a $\overline{4}$ molecule with $\mathrm{C}(0)-\mathrm{C}(1)=1 \cdot 50, \mathrm{C}-\mathrm{C}($ pheny 1$)=1 \cdot 39, \mathrm{C}-\mathrm{H}=$ $1.08 \AA$ and tetrahedral and trigonal angles to obtain values of $\psi=7.5, \theta=44^{\circ}$. The exact agreement in ψ reflects the effectiveness of the minimum potential method in predicting intermolecular packing.

Table 1. Crystal and structure analysis data for tetraphenylmethane
Tetragonal; space group $P \overline{4} 2_{1} c ; Z=2 ; \mathrm{C}_{25} \mathrm{H}_{20} ;$ m.p. $280^{\circ} \mathrm{C}$; molecular symmetry $\overline{4}$; molecular weight $320 \cdot 44 ; D_{m} 1 \cdot 217 \mathrm{~g} \mathrm{~cm}^{-3}$; $\mu(\mathrm{Cu} K x)=0.857 \mathrm{~cm}^{-1}$.

Cell parameters	Texas	East Pa.	West Pa .
Temperature	$20^{\circ} \mathrm{C}$	$20^{\circ} \mathrm{C}$	$26^{\circ} \mathrm{C}$
a (\AA)	$10 \cdot 894$ (2)	10.899 (2)	10.916 (3)
c ($\AA^{\text {a }}$	$7 \cdot 280$ (1)	$7 \cdot 279$ (1)	$7 \cdot 287$ (2)
$V\left(\AA^{3}\right)$	864.1 (4)	864.7 (4)	868.3 (5)
$\lambda(\mathrm{Cu} \mathrm{K} \mathrm{\alpha})=1 \cdot 5418 \AA$			
Intensity data			
Crystal source	Aldrich Chem. Co.	Prof. Kurt Mislow	Aldrich Chem. Co.
Solvent for recrystallization	Benzene-toluene		Benzene
Crystal size (mm)	$0.16 \times 0.14 \times 0.44$	$0.1 \times 0.2 \times 0.4$	$0.11 \times 0.09 \times 0.5$
Diffractometer, $\theta / 2 \theta$ scan with graphite-	Syntex $P \overline{1}$	Picker FACS 1	Nonius CAD-4
monochromatized $\mathrm{Cu} K \alpha$ Total independent data observed	549 (140 collected in parallel mode) $439[I>3 \sigma(I)]$	420 (averaged from $h k, k h$ pairs) $405[I>2 \sigma(I)]$	533 (averaged from $h k, k h$ pairs) $444[I>2 \sigma(I)]$
2θ limit (${ }^{\circ}$)	158	125	150
No absorption corrections ap	plied		

Structure solution
Redetermination from 3D Patterson and difference syntheses

Redetermination using trial Refinement from Sumsion \& orientation in a general constraint refinement program (Chesick \& Davidon, 1975)

Parameter refinement

R_{1} R_{2}

Goodness of fit
Weighting scheme

Full-matrix least-squares refinement on $\sum w\left(\left|F_{o}\right|-\left|F_{c}\right|\right)^{2}$ with anisotropic carbons and isotropic hydrogens

$$
\begin{array}{cl}
0.036 & 0.035 \\
& 0.040 \\
& 1 \cdot 08 \\
\omega=\left(0 \cdot 1+0 \cdot 000005\left|F_{o}\right|^{3}\right)^{-1} & \begin{array}{l}
0 \\
\\
\\
\sigma^{\prime}=1 /\left(\sigma^{\prime}\right)^{2} \text { where } \\
\\
\end{array} .08\left(\sigma_{\text {counting stat. }}\right)
\end{array}
$$

Table 2. Atomic coordinates and thermal parameters
Values of C atoms are $\times 10^{4}$; for hydrogens $\times 10^{3} ; \beta$ values are $\times 10^{3}$; standard deviations are in parentheses; parameters are given in the order Texas, East Pa., West Pa. The temperature-factor expression used was exp $\left[-10^{-4}\left(h^{2} \beta_{11}+k^{2} \beta_{22}+l^{2} \beta_{33}+\right.\right.$ $\left.\left.2 h k \beta_{12}+2 h l \beta_{13}+2 k l \beta_{23}\right)\right]$.

	x	y	z	β_{11}	β_{22}	β_{33}	β_{12}	β_{13}	β_{23}	$B\left(\AA^{2}\right)$
$\mathrm{C}(0)$	(0)	0	$0)$	61 (2)	61 (2)	126 (10)				
	(0)	0	0)							2.52 (7)
	(0	0	0)							$2 \cdot 45$ (5)
C(1)	150 (2)	1135 (2)	1270 (4)	62 (2)	64 (2)	124 (4)	-3(1)	7 (3)	0 (3)	
	146 (2)	1129 (2)	1271 (3)	60 (4)	61 (0)	123 (8)	-7 (3)	17 (5)	-5 (5)	
	146 (2)	1131 (2)	1270 (2)	56 (1)	60 (1)	111 (3)	-5 (1)	10 (2)	0 (2)	
C(2)	987 (3)	1073 (3)	2724 (4)	79 (2)	88 (2)	148 (6)	-5 (2)	-2 (3)	-2 (3)	
	991 (2)	1071 (2)	2720 (3)	72 (0)	86 (3)	140 (9)	-16 (3)	-5 (5)	-1 (6)	
	988 (2)	1071 (3)	2722 (3)	71 (1)	83 (2)	129 (4)	-5 (1)	-4 (2)	-6 (2)	
C(3)	1159 (3)	2055 (3)	3892 (5)	87 (2)	114 (3)	151 (6)	-24 (2)	1 (3)	-23 (4)	
	1166 (2)	2055 (2)	3894 (4)	82 (1)	116 (5)	153 (13)	-55 (4)	10 (6)	-39(7)	
	1162 (2)	2054 (2)	3895 (3)	83 (2)	111 (2)	134 (4)	-25 (2)	1 (2)	-20 (2)	
C(4)	498 (3)	3119 (3)	3665 (5)	117 (3)	91 (2)	186 (6)	-25 (2)	21 (4)	-43 (4)	
	499 (2)	3120 (2)	3655 (4)	115 (4)	89 (2)	186 (16)	-51 (4)	50 (7)	-71 (7)	
	499 (3)	3120 (2)	3662 (3)	111 (2)	86 (2)	175 (4)	-26 (2)	23 (1)	-42 (3)	
C (5)	-350 (3)	3185 (3)	2267 (5)	114 (3)	67 (2)	214 (7)	2 (2)	21 (4)	-16 (4)	
	-353 (2)	3195 (2)	2265 (4)	110 (3)	71 (3)	210 (9)	0 (4)	47 (7)	-51(6)	
	-356 (2)	3189 (2)	2263 (3)	107 (2)	67 (2)	195 (4)	3 (2)	23 (3)	-21(2)	
C(6)	-530 (3)	2206 (3)	1081 (5)	82 (2)	65 (2)	170 (6)	6 (2)	-2 (4)	-12 (3)	
	-525 (2)	2206 (2)	1074 (4)	81 (3)	69 (5)	162 (18)	8 (3)	4 (6)	-19 (5)	
	-526 (2)	2204 (2)	1076 (3)	76 (2)	65 (1)	144 (4)	3 (1)	4 (2)	-11(2)	

Table 2 (cont.)

	x	y	z	$B\left(\AA^{2}\right)$
H(2)	145 (3)	32 (3)	291 (4)	3.9 (6)
	148 (2)	27 (2)	289 (3)	$4 \cdot 7$ (4)
	145 (2)	31 (2)	292 (3)	$3 \cdot 4$ (4)
H(3)	175 (3)	196 (3)	497 (6)	$5 \cdot 1$ (7)
	178 (2)	196 (2)	484 (4)	$4 \cdot 6$ (4)
	175 (2)	195 (2)	490 (4)	$4 \cdot 7$ (4)
H(4)	62 (3)	380 (3)	448 (5)	4.9 (7)
	63 (2)	385 (2)	448 (3)	$5 \cdot 7$ (5)
	64 (2)	384 (2)	441 (3)	$5 \cdot 0$ (5)
H(5)	-81 (3)	389 (3)	209 (4)	$4 \cdot 4$ (6)
	-86 (2)	396 (2)	208 (3)	$4 \cdot 8$ (4)
	-83 (2)	393 (2)	213 (3)	$4 \cdot 6$ (5)
H(6)	-117 (3)	230 (3)	10 (5)	$4 \cdot 7$ (7)
	-118(2)	227 (2)	10 (3)	$4 \cdot 4$ (4)
	-116 (2)	228 (2)	8 (4)	$4 \cdot 3$ (5)

Table 3. Bond lengths (\AA) and valence angles $\left({ }^{\circ}\right)$ in tetraphenylmethane

(a) Mean of $20^{\circ} \mathrm{C}$ data; (b) $26^{\circ} \mathrm{C}$ data.		
	(a)	(b)
$\mathrm{C}(0)-\mathrm{C}(1)$	1.550	$1 \cdot 551$
$\mathrm{C}(1)-\mathrm{C}(2)$	1.401	1.403
$\mathrm{C}(2)-\mathrm{C}(3)$	1.382	1.385
$\mathrm{C}(3)-\mathrm{C}(4)$	$1 \cdot 378$	1.381
$\mathrm{C}(4)-\mathrm{C}(5)$	1.377	$1 \cdot 384$
$\mathrm{C}(5)-\mathrm{C}(6)$	1.391	1.392
$\mathrm{C}(6)-\mathrm{C}(1)$	1.389	$1 \cdot 389$
$\mathrm{C}(1)-\mathrm{C}(0)-\mathrm{C}\left(1^{\prime}\right)$	$106 \cdot 7$	$106 \cdot 8$
$\mathrm{C}(1)-\mathrm{C}(0)-\mathrm{C}\left(1^{\prime \prime}\right)$	110.9	$110 \cdot 8$
$\mathrm{C}(0)-\mathrm{C}(1)-\mathrm{C}(2)$	118.8	118.7
$\mathrm{C}(0)-\mathrm{C}(1)-\mathrm{C}(6)$	$123 \cdot 7$	$123 \cdot 8$
$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)$	121.2	$121 \cdot 3$
$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)$	$120 \cdot 4$	$120 \cdot 3$
$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)$	119.4	$119 \cdot 3$
$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(6)$	$120 \cdot 5$	$120 \cdot 4$
$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(1)$	$120 \cdot 9$	121.2
$\mathrm{C}(6)-\mathrm{C}(1)-\mathrm{C}(2)$	117.5	117.5

The deformations from ideal tetrahedral and trigonal geometry observed in the crystal structure are described below.
(i) The $\mathrm{C}(0)-\mathrm{C}(1)$ bonds are 1.553 (3) \AA, when the $+0.003 \AA$ riding correction is included. This is longer than usual, e.g. $1.525 \AA$. In triphenylmethane, the corresponding distances range from 1.508 to 1.556 (7) with a mean of $1.524 \AA$ (Riche \& Pascard-Billy, 1974).
(ii) The central carbon valence angles are $106 \cdot 7$ (2) ${ }^{\circ}$ for the two bisected by the $\overline{4}$ axis, as shown in Fig. $1(c)$, and $110 \cdot 9(2)^{\circ}$ for the other four [Fig. $1(d)$]. The corresponding angles in the crystal structure of triphenylmethane are $118.8,112 \cdot 8$ and 114.5°. In tetraphenyl silicon (Chieh, 1971; Glidewell \& Sheldrick, 1971), germanium (Chieh, 1971; Karipides \& Haller, 1972) and tin (Chieh \& Trotter, 1970) these angles are $107 \cdot 5$ (4) and $110 \cdot 4$ (4), $108 \cdot 8$ (2) and $109 \cdot 8$ (2), $110 \cdot 8$ (9) and 108.8 (4) ${ }^{\circ}$ respectively. It appears that as the central atom gets larger this distortion from ideal tetrahedral gets smaller and may actually reverse. The corresponding θ values are $53 \cdot 1,54 \cdot 3$ and $58 \cdot 7^{\circ}$, respectively.
(iii) In addition, the diameters of the phenyl rings [e.g. $\mathrm{C}(1) \cdots \mathrm{C}(4)$] are not collinear with the bonds [e.g. $\mathrm{C}(0)-\mathrm{C}(1)$] owing to a difference of $5 \cdot 0^{\circ}$ (17 7) between the angles $\mathrm{C}(0)-\mathrm{C}(1)-\mathrm{C}(2)$ and $\mathrm{C}(0)-\mathrm{C}(1)-\mathrm{C}(6)$ as shown in Fig. $1(a)$.
(iv) There is also a small closure of the phenyl ring at $\mathrm{C}(1)$ of $3.0^{\circ}(10 \sigma)$ relative to the mean of 120.5° for the other five angles (119.7 to $121 \cdot 4^{\circ}$). A similar small closure at $\mathrm{C}(1)$ is observed in the tetraphenylborate ion where the angle is considerably more closed to about 114° (Cotton \& Murillo, 1975). The phenyl C-C distances range from +0.013 to $-0.012 \AA$ from a mean of $1.393 \AA$ (corrected). The bonds about
$\mathrm{C}(1)$ are $0.015 \AA(3 \sigma)$ longer than those about $\mathrm{C}(4)$; this is a marginal observation which occurs from all three sets of data and may be significant.
(v) The phenyl rings have a barely significant boattwist deformation with deviations from the best leastsquares plane of $\mathrm{C}(1)-0.010, \mathrm{C}(4)-0.010, \mathrm{C}(2)$
(a)

(c)

(b)

(e)

Fig. 1. Molecular geometry of tetraphenylmethane. (a) View down $\overline{4}$ axis. (b) View down $\mathrm{C}(1)-\mathrm{C}(0)$. (c) View showing $\mathrm{C}(1)-$ $\mathrm{C}(0)-\mathrm{C}\left(1^{\prime}\right)$ angle bisected by 4 axis. (d) View showing $\mathrm{C}(1)-\mathrm{C}(0)-\mathrm{C}\left(1^{\prime \prime}\right)$ angle generated by 4 axis. (e) Stereo view of molecule. Diagrams produced from atomic coordinates by means of the CRYSNET PROJECT computer graphics (Bernstein et al., 1974).

Fig. 2. Variation of the closest intramolecular distances with the torsion angle $\mathrm{C}(1)-\mathrm{C}(0)-\mathrm{C}\left(1^{\prime}\right)-\mathrm{C}\left(2^{\prime}\right)$. (') $\bar{x} \bar{y} z ;\left({ }^{\prime \prime}\right) \bar{y} x \bar{z} ;$ ("') $y \bar{x} \bar{z}$.
$+0.006, \mathrm{C}(5)+0.006, \mathrm{C}(3)+0.003, \mathrm{C}(6)+0.003$. The data for this plane are available.*

Tetraphenylmethane is an overcrowded molecule in a loosely packed crystal environment. Fig. 2 shows the dependence of the shortest intramolecular separations on the angle of twist of the phenyl rings. The slopes of $\mathrm{C}(1) \cdots \mathrm{C}\left(6^{\prime \prime}\right)$ and $\mathrm{C}(1) \cdots \mathrm{C}\left(2^{\prime}\right)$ intersect close to the observed value of 48°, where the separations are $2 \cdot 90 \AA$. The steeper dependency of $\mathrm{C}(1) \cdots \mathrm{C}\left(2^{\prime}\right)$ is opposed by that of $\mathrm{C}(2) \cdots \mathrm{H}\left(6^{\prime \prime}\right)$, which has a value of $2 \cdot 50 \AA$. In contrast, the shortest intermolecular distances are $\mathrm{H} \cdots \mathrm{H} 2 \cdot 50, \mathrm{C} \cdots \mathrm{H} 2 \cdot 87, \mathrm{C} \cdots \mathrm{C} 3.65 \AA$. This suggests that the conformation of the molecules in the crystal is determined mainly by the intramolecular forces.

For financial support A.R. and G.A.J. are grateful to the National Institutes of Health, 5T01 GM01728.

[^1]J.P.C. and J.D. are grateful to the National Science Foundation. F.A.C., B.A.F. and C.A.M. are grateful to the Robert A. Welch Foundation, A494.

References

Ahmed, N. A., Kitaigorodsky, A. I. \& Mirskaya, K. V. (1971). Acta Cryst. B27, 867-870.

Bernstein, H. J., Andrews, L. C., Berman, H. M., Bernstein, F. C., Campbell, G. H., Carrell, H. L., Chiang, h. B., Hamilton, W. C., Jones, D. D., Klunk, D., Koetzle, T. F., Meyer, E. F., Morimoto, C. N., Sevian, S. S., Stodola, R. K., Strongson, M. M. \& Willoughby, T. V. (1974). Second Annual AEC Scientific Computer Information Exchange Meetings, Proceedings of the Technical Program, BNL 18803, pp. 148-158; CRYSNET -A Network of Intelligent Remote Graphics Terminals.
Busetti, V., Mammi, M., Signor, A. \& Del Pra, A. (1967). Inorg. Chim. Acta, 1, 424-428.
Chesick, J. P. \& Davidon, W. (1975). Acta Cryst. A31, In the press.
Chieh, P. C. (1971). J. Chem. Soc. (A), pp. 3243-3245.
Снier, P. C. (1972). J. Chem. Soc. Dalton, pp. 1207-1208.
Сhieh, P. C. \& Trotter, J. (1970). J. Chem. Soc. (A), pp. 911-914.
Cotton, F. A. \& Murillo, C. A. (1975). Unpublished work.
Glidewell, C. \& Sheldrick, G. M. (1971). J. Chem. Soc. (A), pp. 3127-3129.

Ismailzade, I. G. \& Zdanov, G. S. (1952). Z. Fiz. Khim. SSSR, 26, 1619-1630.
Karipides, A. \& Haller, D. A. (1972). Acta Cryst. B28, 2889-2892.
Riche, C. \& Pascard-Billy, C. (1974). Acta Cryst. B30, 1874-1876.
Robbins, A. (1975). Ph. D. thesis, Univ. of Pittsburgh, Pa., U.S.A.

Robbins, A. \& Jefrrey, G. A. (1974). Abstracts B11 of Amer. Cryst. Assoc. summer meeting.
Sumsion, H. T. \& Mclachlan, D. (1950). Acta Cryst. 3, 217-219.

[^0]: * These data have been deposited with the British Library Lending Division as Supplementary Publication No. SUP 31026 (28 pp., 1 microfiche). Copies may be obtained through The Executive Secretary, International Union of Crystallography, 13 White Friars, Chester CH1 1NZ, England.

[^1]: * See footnote on p. 2395

